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shed eddies without significant change in Strouhal number 
even when the stream is highly turbulent. There is, therefore, 

experimental data to support the application of the resonance 
hypothesis to cylinders. However, ifthe resonance hypothesis 
for spheres were correct, transfer should be maxims at 
about the same value of L/D as for cylinders. Since this 
etTect is now shown by the data reported by Raithby and 
Ecker$ it would appear that for spheres the resonance 
hypothesis must be rejected. Unfortunately, no spectral 
data for the free-stream turbulence are available for more 
realistic estimates of the energy-containing frequencies. 
More detailed turbulence measurement in the near wake of 
spheres are required before this uncertainty is finally 

resolved. 

ACKNOWLEDGEMENTS 

The financial support of the National Research Council of 

Canada and the Pulp and Paper Research Institute of 
Canada is gratefully acknowledged. 

1. 

2. 

3. 

4. 

5. 

G. D. RAITHBY and E. R. G. ECKERT, The effect of 
turbulence parameters and support position on the heat 
transfer from spheres, ht. J. Heat Mass Tram&r 11, 
1133-1252 (1968). 
J. 0. HINZE, Turbulence: An Intro&ction to its Mechanism 
and Theory, p. 559. McGraw-Hill, New York (1959). 
B. G. VAN DER HEGGE ZUMN, Heat transfer from 
horizontal cylinders to turbulent air flow. Appl. Scient. 
Res. Al, 205-223 (1958). 
W. MILLER, Experimentelle Untersuchungen zur Hydro- 
dynamik der Kugel, Phys. 2. 39, 57-80 (1938). 
L. B. TOROBIN and W. H. GAUVIN, Fundamental aspects 
of solids-gas flow, Can. J. Chem. Engng 37, 167-176 
(1959). 

Int. 1. Heat MOSS TRWIS~W. Vol. 13, pp. 1629-1632. Pergamon Press 1970. Printed in Great Britain 

MASS TRANSFER WITH CHEMICAL REACTION IN A FINITE FALLING FILM 

G. J. JAMESON, S. R. C. BUR~HELL and J. C. GOlTIFREDI 

Department of Chemical Engineering and Chemical Technology, Imperial College, London S.W.7., England 

(Received 4 December 1969 and in revisedform 3 April 1970) 

c, 
c, 
D, 
k 
m, n, 
M, - 
NAC. 
R*, 
r, 
u, 

NOMENCLATURE 

molar concentration in the liquid ; 
dimensionless molar concentration: 
molecular diffusivity ; 
specific reaction rate ; 
order of reaction with respect to components A, B ; 
dimensionless time, nB/2(n + 1) ; 
average molar flux into liquid film ; 
average molar flux for physical absorption alone ; 
rate of reaction ; 
liquid velocity ; 
liquid velocity at interface; 
dimensionless liquid velocity, u/u,,,; 
coordinates, Fig. 1; 

qK&3IVC*;D* ; 
%&CAi : 
angle of inclination to horizontal ; 
liquid film thickness; 
dimensionless Film thickness S(kc$&; ‘;D,)* ; 
k&&c:; ’ (x/u,,,); 
liquid viscosity ; 
stoichiometric coefficient ; 
liquid density ; 
~Aoimo. 

Subscripts 
A, B, components A, B ; 
0, evaluaied at time zero; 

I. evaluated at the interface. 

INTRODUCTION 

THE PENETRATION theory of Higbie [I] has been widely 
applied to unsteady state ~ffusionai problems, with and 
without chemical reaction. A comprehensive survey of the 
literature has recently been given by Secor and Beutler [2]. 
As far as we can ascertain, all the solutions with chemical 
reaction have been obtained for the case of a semi-infinite 
body of liquid, although physical absorption into a finite 
tilm has been considered [13]. 

If the liquid were in the form of a finite falling film which 
is possibly amore realistic situation in chemical engineering, 

then the rate of mass transfer would be expected to be affected 
by the finite thickness of the tilm, since the film would become 
saturated after a certain distance and diffusion would cease. 
In this note we consider the problem of diffusion with a 
generalized chemical reaction into a falling film of finite 
thickness. The results are compared with those of Brian 
er af. 12 9 for the semi-infinite case. 

H 
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THEORY 

The physical system is shown in Fig. 1. The interface is 

taken to be flat, although in practice waves might form if 

the film is long. The velocity of the liquid is given by the 

Nusselt relation : 
!J = u,,,(l - om) (11 

6’ pcl sin ;I 
u,,, = p---, 

2!J 
(2) 

The chemical reaction, whiih is considered irreversible. 

takes place between a gaseous species A and a second 

species B which has already dissolved in the liquid phase. 

FIG. 1. The coordinate system. 

The rate of consumption of A per unit volume of liquid is 

rA = kc;c$ (3) 

where k is the specific reaction rate, c, and ca are instan- 

taneous concentrations of A and B in the liquid and m_ n 

are the orders of reaction with respect to components A, B. 

We assume that the gas mass transfer resistance is negligible 

and that there is no interfacial resistance. The concentrations 

of A in the gas and liquid phases at the interface are in 

equilibrium. 

Ignoring diffusion in the direction of flow, the differential 

equations for mass transfer in the liquid are : 

(41 

wherev is the stoichiometric coefficient in A + vB_+ products. 

It is convenient to introduce dimensionless variables as 

follows 

A = 6(k& c;; ‘/DA)+ (6) 

I, = kc-& c;; ’ (uju,,,) (7) 

CA = cAicAI ; c, = CB,CBO (8) 

Y = yj6: u = uju,,, (9. 10) 

C( = c~,D,ivc,,,D,. (11) 

Equations (4) and (5) become 

(12) 

These are now to be solved with the initial and boundary 

conditions: 

0 = 0. 0 < Y < 1: c, = 0. C” = 1 (14) 

Y=O, 020: c,= I. iC,!iY=O (15) 

Y = 1. 0 > 0: ?C,;?Y = 0. ?C,,?Y = 0 116) 

A material balance over an element of fluid of thickness 

dy length d.u gives the mean rate of absorption WA0 of A. 

,,,=:$&,dx=j [C, + (I - C,)v] ady (17) 

0 0 

while the similar expression for physical absorption into a 

semi-infinite liquid is 

C AZ (18) 

where Y in this case refers to the physical absorption. 

The results of our computations are expressed in terms of 

[C, + (I - C,,/(] C’dY (19) 

0 

where p = caO;vcAI This enables easy comparison with 

previous work on stagnant fluids. 

COMPUTATION 

The parabolic equations (12) and (13) were solved using the 

Crank-Nicolson method [5-X] and the resulting non- 

linear equations were linearized by the method of Douglas 

[g]. The two resulting sets of simultaneous equations were 

then solved (with the initial and boundary conditions) with 

the aid of an IBM 7090 digital computer. The integration 

needed for 4 was carried out using Simpson’s Rule. Standard 

convergence and stability tests were used on every run [9], 
and comparison was also made with previqus results 

[3, 4, lo]. On the basis of these tests and comparisons, 

our results can be considered accurate to +3 per cent. 

RESULTS 

The results are presented in Figs. 24 for I>, = DB 

x = /j = 2 with n = at for n = 1.~3. 

The parameter M’ [where M = n0/2(n + 1)) has been 

used as a modified dimensionless time in order to facilitate 
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comparison with the results for a stagnant liquid [2 31 

where A + co. 

FIG. 2. Ratio of finite film mass transfer rate to transfer rate 
for semi-infinite film, as a function of dimensionless time. 

n = m = 1. ----- Brian et al. [3,4]. 

Keeping A constant, we see that with increasing M (i.e. 

increasing residence time) 4 generally increases up to a 

point when the finite film thickness becomes important. 

Then $I decreases again and as M* + co, 4 + 0. Obviously, 

the thinner the film, the quicker it becomes depleted in 

species B and the more rapidly the absorption rate approaches 

zero. 

A=ao 

2 3 

(d/2/l+ 2)i 
FIG. 3. Ratio of finite film mass transfer rate to transfer rate 
for semi-infinite film, as a function of dimensionless time; 

n = m = 2. ------ Brian et al. [3,4]. 

As the order of reaction is increased the film thickness 

has mom effect. This is to be expected since the greater the 

order, the more rapid the reaction rate. 

Although the effect of finite film thickness is quite marked 

in Figs. 24, the practical significance is of course that for 

thick films and short contact times, the semi-infinite theory 

of Brian et ul. [3. 41 is quite adequate. 

FIG. 4. Ratio of finite film mass transfer rate to transfer rate 
for semi-infinite film, as a function of dimensionless time; 

n = M = 3. ----- Brian et al. [3,4]. 

For example, take a packed absorption column in which 

the liquid flows over Raschig rings of i in. dia. operating 

with a typical liquid rate of 4ooO Ib$ft’. A typical value of 

the film thickness for a liquid of viscosity 1 cp would be 

10e2 cm [ll, 121. Thus if we put n = nr = 2. and the path 

length at 1 cm 

Mt = A(nl?i6)* 

and tJ 1 0.02. Thus M* rr. 0.01 A and we see that from 

Fig 3, the value of 4 is virtually that given by the semi- 

infinite theory no matter what value of A is chosen. 

If the contact length were 100 cm, which could occur in a 

wetted wall column such as is used to obtain absorption 

data, the finite film thickness would definitely have an 

effect on the mass transfer rate, especially for higher order 

reactions. 
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INTRODUCTION 

FOR HEAT conduction in a fixed region the specification of 
the local surface temperature or local heat flux normal to the 
surface is sufftcient to determine the temperature distribution 
within the region. The use ofconformal mapping for this type 
of heat conduction problem in two dimensions has been dis- 
cussed in [I]. If the surface temperature and heat flux are 
both specified the shape of the region must be free to adjust 
to accommodate both of these conditions. This note deals 
with the application of conformal mapping to two- 
dimensional heat conduction problems where the shape of 
the conducting region is unknown and will either adjust 
itself or is to be shaped in order to satisfy the imposed 
thermal conditions. 

The method is best illustrated by considering a specific 
example. Thus, consider the geometry shown in Fig. 1. A 
cooled surface maintained at the temperature t, is insulated 
at its sides. and the length normal to the plane of the figure 
is sufficiently long so that the geometry can be considered 
two dimensional. There is a region of conducting material 
on the plate. The upper surface of this region is isothermal 
and is subjected to a unidirectional source of thermal radia- 
tion. This region might be, for example, a steady state frost 
layer which has formed on a very cold plate exposed to the 
sun’s rays. Since the frost surface is at the freezing or sublima- 
tion temperature consistent with the surrounding conditions, 

it will be at a constant temperature t,. It is desired to find the 
shape that the frost region assumes and the heat flow through 
this region since this determines how well the frost layer 
insulates the surface. Alternatively the results can be inter- 
preted as the solution to the problem of finding the shape 

FIG. 1. Cross section of two-dimensional region with free 
boundary at uniform temperature ts and with uniform 
absorptivity dl exposed to unidirectional radiation yO. 

of a conducting region that will provide a uniform tempera- 
ture rs at its surface when this surface is subjected to incident 
radiation. It will be assumed that f is sufficiently low so 
that radiation emitted from the surface can be neglected 
compared with the absorbed incident radiation. 


